
Universal representability for graphical processing units
Nick Hu

University of Oxford, Department of Computer Science
nick.hu@cs.ox.ac.uk

Universal representability for graphical processing units
Nick Hu

University of Oxford, Department of Computer Science
nick.hu@cs.ox.ac.uk

The essence of quantitative data

Quantitative data is numeric. The scientific method, in a nutshell, can be summarised
as:

experiment

design

hypothesis
analyse

results

process

data
collect

Processing data might mean regression analysis, noise filtering, or even reshaping. In
the modern world, the processing is almost always performed by computers, which are
instructed by programs.

Thus, it is necessary to have a solid handle on what it might mean to represent and
manipulate data on the machine.

Isomorphism

Consider the following graph:

A

B C

D

We have a notion of its data, and in a way the following graphs are the ‘same’ as they
have the same data:

A

C B

D

A

B

C

D

This notion of sameness is called isomorphism.
For the computer to understand a graph, it needs a concrete representation (in the sense

that the mapping into computer memory is well-defined).

Adjacency list

For each node, a list of the nodes to
which it is connected is tracked.

A → [B, D],

B → [C],

C → [D],

D → [D]




Good for minimising memory usage.

Adjacency matrix

For every pair of nodes, there is
either a connection from the first to the
second (1) or there is not (0).

A B C D
A 0 1 0 1
B 0 0 1 0
C 0 0 0 1
D 0 0 0 1

Good for fast computations.

Concrete concerns

The twomethods store identical data, but in different ways; neither is definitively better
than the other, because different situations have differing computational concerns.

This is an example of the classic time-space trade-off principle:

Memory

Time

Optimal

Impossible

Inefficient

The adjacency list is sparse (compact but slow), whereas the adjacency matrix is dense
(fast but large). The adjacency list is like tracking only the 1s of the adjacency matrix, and
implicitly assuming everything else is 0 — both have the same information, and so they
are isomorphic.

Quantitative data from the real world is often dominated by notional 0-values, so sparse
representations are frequently used.

Abstraction

The principle of abstraction states that we need not be concerned with concrete (imple-
mentation) details when we program computers, and instead consider how each compon-
ent interact together abstractly.

Data structure representation (graph)

Machine implementation

Program space
(under contextual equivalence)

result
execution

Adjacency list

Adjacency matrix

CPU

GPU

FPGA

...

p1

pn

This separation of concerns facilitates compositionality, allowing for simple programs
(which are much easier to verify for correctness) to be designed and built in isolation in
order to compose them to create larger, more complex programs.

Representable functors

A representable functor can be considered a data structure which exists as a concrete
tabulation in memory, and isomorphically as a function of index yielding the table entry
at that index. The isomorphism part means that it is unnecessary to define both; from
one representation, the computer can derive the other. In the programming language
Haskell:

class Functor f => Naperian f where

type Log f

tabulate :: (Log f -> a) -> f a

lookup :: f a -> (Log f -> a)

positions :: f (Log f)

With this interface, the primitive array operations can be distilled:
• replication, to lift dimensions for rank
polymorphism via alignment;

• zip, to combine arrays;

• traversal, to sequence array data;
• transposition, to select an index along a
multi-dimensional array.

The atoms of these programs are hypercuboids (n-dimensional arrays), which are com-
bined with these operations to process data.
Programming in this way allows the use of equational reasoning to prove properties

about programs (for example, identical behaviour on both the concrete tabulation and
the function from indices) in the same way that one might prove theorems about algebra.
Algebraic equalities lead to computational shortcuts, optimising algorithm efficiency.

Accelerate

Accelerate is a Haskell library which generates code to run on a graphical processing
unit (GPU). Where a traditional computer processor might have up to a dozen cores each
with a large amount of cache memory, a modern GPU might have thousands of compute
cores which are individually simpler and slower, with less memory. This allows certain
computational workloads, which are paralisable and often naturally numeric, to be sped
up by several orders of magnitude.
However, programming for the GPU is traditionally very complicated, because it is a

specialised hardware component as opposed to the general purpose CPU.
The goal is to be able to write the same programs for the abstract machine,

which can automatically utilise the GPU if it is available.

program CPU result

Accelerate program GPU

runs on

∼isomorphic to

produces
(slowly)

runs on

(qu
ick

ly)

pro
duc

es

Hypercuboidal Accelerate arrays

Representable functors provide semantics for writing array programs abstractly in
terms of hypercuboids, which greatly increases programmer efficiency. My work is the
interpretation of the hypercuboids into the Accelerate world, providing witness to the iso-
morphism between Accelerate data structures and hypercuboids. Such work facilitates the
automated translation of hypercuboid programs into Accelerate programs which pre-
serve correctness.
I was successful in laying the groundwork, establishing an effective mechanised trans-

lation between the base Accelerate Array type and the Naperian Hyper type:

Hyper Array
toArray

∼
hyperise ◦ λx.(arrayShape x)(toList x)

References

JeremyGibbons. ‘APLicative Programmingwith Naperian Functors’. In: European Symposium on Program-
ming. Ed. byHongseok Yang. Vol. 10201. LNCS. Apr. 2017, pp. 568–583. doi: 10.1007/978-3-662-54434-
1_21. url: http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/aplicative.pdf.


